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A highly regarded method to obtain an orthonormal basis, Z, for the null space of a matrix
AT is the OR decomposition of A, where Q is the product of Householder matrices. In several
optimization contexts A(x) varies continuously with x and it is desirable that Z(x) vary con-
tinuously also. In this note we demonstrate that the standard implementation of the OR decomposi-
tion does not yield an orthonormal basis Z(x) whose elements vary continuously with x. We
suggest three possible remedies.
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1. Introduction

The question we are addressing in this short note is this: Let B be a ball around
a point x*€R". Suppose that A(x) is an n by ¢t matrix of rank ¢ whose elements
vary continuously with x on B. Is it possible to construct, stably and efficiently, a
matrix Z(x) with elements which vary continuously with x in B and with the
additional properties

A(x)TZ(x)=0, (1.1)
Z(xX)'Z(x)=Inyy ? (1.2)

Several techniques for nonlinearly constrained optimization problems require the
availability of a matrix Z(x) with properties (1.1) and (1.2). (See, for example,
Bartels and Conn (1982), Coleman and Conn (1982a, b), Kaufman (1975), Murray
and Wright (1978), Murray and Overton (1980), Tanabe (1981), and Wright
(1979)). Theoretical results given in Coleman and Conn (1982a, b) explicitly require
that the elements of Z(x) vary continuously in a ball around x*, where x*is a
solution to the nonlinear programming problem. Kaufman assumes differentiability
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of Z(x). The other references are not as explicit in their dependence on continuity;
however it would appear that possible future theoretical developments concerning
projected quasi-Newton methods would also require that Z(x) vary continuously.
Surprisingly, the standard implementation of the QR factorization of A(x), using
Householder matrices (elementary reflectors), does not necessarily yield a matrix
Z(x) with continuously varying elements.

In Section 2 we support this claim in detail. We suggest three possible remedies
in Section 3. The suggested techniques ensure the existence of a ball B around the
solution in which Z(x) is continuous (the user has little control over the radius of
B). While our concern here is largely theoretical, we might point out that the
remedies would be very easy to implement.

2. The standard implementation

A well-accepted procedure to obtain an orthonormal basis for the null space of
AT is given by Gill and Murray [1974]: Construct an orthogonal matrix Q = (Q,, Q3)
such that

QiA=R, (2.1)
where R is t by t and upper triangular, and

03;A=0. (2.2)
We can then identify Z with Q,. Unquestionably, the most popular method for
obtaining such a Q is the formation of a product of Householder matrices. Let us

consider the simple case when t=1 and A=a=(a,,a,,..., a,)’. The textbook
rule for constructing Q is

2uu’ .
Q«I- " where u=a-+sgn(a,)|ale’,and
sgn(a;)=1if a;=0,
=—1if a,<0. (2.3)
(The vector (1,0,...,0)" is denoted by e'.) Now suppose that each component

a;(x) is a continuous function of x in B. We wish to examine the continuity of Q
with respect to a(x). To do this it is useful to partition Q in the following way:

Q= ( 911 QQ1>
g1 Q

(Note that

Q,= (‘hl)
91
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and the columns of

T
o-('§)

are orthonormal bases for the range space of a(x) and null space of a(x)", respec-
tively.) It is straightforward to show that

u"u=2|alf||al|+sgn(a,)a,},

and hence
—sgn(a,)a, —sgn(a;)a; .
qu="73 > gy =—7—— forj>1,
! llall a llall
= —a;a; .. = azz
Q; fori#j, and Q; =1

" lall-{llall +sgn(a))a;} lall-{llal+sgn(a)a}
It is clear that q;, and Q are continuous with respect to a(x), however q,, is
discontinuous at the plane a, =0. It follows that Q, is discontinuous at the plane
a,;=0.

Therefore we cannot, in general, assume continuity of Q, when Q is computed
in the standard way—this is unfortunately true even for B of arbitrarily small radius.
Note that when =1 the only situation that is troublesome (for B of arbitrarily
small radius) is when a,(x*)=0. This observation leads us to the first of three
possible strategies described in Section 3.

We note that the elements of Q; do not change continuously with x. However,
this is of no great concern since a continuously varying orthonormal basis for the
range space of A(x) is trivially available given Q,. It is only necessary to monitor
the signs of the diagonal elements of R and the corresponding columns of Q;. Such
a simple solution is not available for Z(x).

3. Variations of the standard method

For simplicity of presentation, we restrict ourselves to the case t = 1. The extension
to the general case is straightforward and we will not go into detail.

a. Row orderings

Suppose that x* is the point of convergence and ||a(x*)||# 0. Hence there is an
ordering of the rows of a(x*) such that a;(x*)# 0. Therefore, if this ordering is
used for all x in B then sgn(a,(x)) is equal to sgn(a,;(x*)) for ||x —x™*| sufficiently
small. Considering the formula for Q given above, it is clear that in this case Q
varies continuously.
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Therefore, maintaining a continuous matrix Z(x) in a neighborhood B of x* is
possible (for B of sufficiently small radius) by suitably ordering the rows of A(x)
and applying the standard QR decomposition rules. Unfortunately, a suitable
ordering is not known a priori. However, given a sequence {x*} that converges to
x*, it is clear that any of a number of row-interchange tests could be employed
which would be independent of the given sequence and which would discover a
suitable ordering and become inactive for ||x* — x*| sufficiently small. The following
interchange tests would serve this purpose:

a* < Ha(x"). (3.1)
if |af|=8|la*|| then go to (3.3). (3.2)
(a) i =min{i: |af|=max|af|},

(b) I« 061, i),

(c) a¥<0Q@,i)a"

Compute Qk as in (2.3) (3.3)

In the program segment above & is a constant satisfying 0<8<1/2n, II is a
permutation matrix and @(1,i) is a permutation matrix that interchanges row 1
with row i when applied to a matrix from the left. It is straightforward to show
that I1 will be constant for k sufficiently large when ||ja*||# 0. The extension to the
OR factorization of a matrix is also straightforward. Moreover, it should be noted
that while another convergent sequence may produce a different ordering, any given

ordering obtained by this process will suffice for all x in a sufficiently small neighbor-
hood of x*.

b. Maintaining the sign bit

The source of our problems is the sign bit used in the standard rule for computing
Q. Is it necessary? That is, can we compute Q as

2uu”
Q«I- T where u=a+|ale' ? (3.4)
u
There are two apparent difficulties. Firstly, if a = —||a|le’, then u is the zero vector—

let us ignore this problem temporarily. Secondly, if a is ‘close’ to —|alle’, then it
would appear that disastrous cancellation may occur in the computation of u and
hence Q will be inaccurate. Parlett (1971) disputes the second claim and suggests
that disastrous cancellation will not occur under these conditions if u is computed
as follows:
s< Y a? (3.5)
i>1

s
Uy e——r
Y (ay=al)’

(3.6)

u<a, j=2,...,n (3.7)
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Formulas (3.5)-(3.7) do not involve the subtraction of nearly equal small quantities
and thus we do not risk disastrous cancellation.

Therefore the following strategy seems appropriate: If a, =0, then compute u, by
u,<a,+|a. (3.8)

If a, <0, then compute u, by (3.5)—(3.7). In either case we can obtain Q by (3.4).

Unfortunately, our problems are not over. Indeed the first difficulty, that Q is
not defined at @ = —||al|e’, is rather troublesome. The kernel of the problem is this:
Q (as defined by (3.4)) does not have a limit point at a. Hence it is impossible to

make an appropriate definition of Q(a). For example, consider that for i #j, i # 1,
i#1, llall#a,

2

—aa; _ —aala]|—a,)

Q;= = 22y -
lall- (lall+a,) llal(lal*— a7)

Hence

—2a,‘aj
tlalr

Jim, 0,(a)= Jim 39
where d =(a,, ..., a,)". But if a approaches —e' along the line (—1, ¢, ¢, .. ., £),
then Q;->—-2(n— 1). However, if a approaches —e' along the line
(-1,¢...,60,¢...,60,¢,...,¢€), where the zeroes occur in positions i and j,
then Q;~>0.

Observe—these difficulties occur only when a(x*) = £|la(x*)|le'. Also, if a(x*) =
+|a(x*)|le! and |la(x*)|>0, then there is a ball around x* for which a(x)#
—|la(x*)|le’, and vice versa. Therefore, if a(x*)# —|a(x*)|e', then formula (3.4)
can be used for all x in a ball B around x*. The elements of Q will Var); continuously
on B provided the radius of B is sufficiently small. Alternatively, if a(x™)#
+la(x*)|le’, then (3.4) can be replaced with

2uu’

uTu

Q«I-

where u=a—|ale". (3.4")

If a, <0, then we can compute u, by
u, < a;—|all. (3.5")
If a,> 0, then we can compute u, by

-5
e .
a; +|la]

u, (3.6)
The elements of Q will vary continuously provided the radius of B is sufficiently
small.

Unfortunately, one does not know, a priori, if a(x*)=%||a(x*)||le'. However, it
is clear that several switching rules could be employed in conjunction with (3.4)

and (3.4")—if x* - x* the switching rule would become inactive for sufficiently large
k.
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For example, let {x"} be a sequence which converges to x*. Denote a(x®) by ak,
A corresponding sequence of elementary reflectors can be defined by

K
Ox—1°0,
Ye < 3.10)
< (
if 4 =—8 then o< oy, else oy <sgn(ar), (3.11)
u* <a*+aola"e’, (3.12)
2uk(uk)'r
Qk“I‘“W. (3.13)

To begin, choose o,=sgn(a}), and always compute u, at step (3.12) by formulae
(3.5)—(3.8), if o =1, or by formulae (3.5')—(3.6’) if o, =—1. The parameters 7y
and 6 are introduced in an attempt to maintain the previous sign bit oy_;. This, in
turn, results in the elements of Z(x) (or Q,(x)) behaving in a continuous manner.
The parameter 6 must satisfy 6 <1, and should be positive in order to express a
reluctance to change signs: say 6 =0.9.

c. Elementary rotation matrix

The third strategy that we investigate shares some features with the approach
described above but is based upon elementary rotation matrices rather than reflec-
tors. If ¢;, g, are two vectors of unit length with g, # —q, then the elementary
rotation matrix sending ¢q; into g, is

P=1-(q:,9.)D(q:,9)" (3.14)

where

Dol ( 1 1)
T+ \—-(1+2y) 1)’

and y = q]q,. Some properties of P are

(i) P"P=1, (i) Pg;=q, (i) lim P=1I

91792

Also, it can be readily verified that P rotates vectors in the plane, spanned by the
vectors ¢q; and g,, through an angle of cos™'(y) with vectors orthogonal to this
plane left untouched. Property (iii) is not shared by general elementary reflectors;
itis this property which avoids the need for two definitions of the same transformation
which are typically used to implement an elementary reflector stably. In fact if Q
is of the form (3.4), with any nonzero vector u, then ||Q — I, = 2—hence Q is never
close to the identity transformation.
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In the special case ¢, = a/||a| and g, = e’ with o = +1 the formula for P simplifies
to

oa, od’
a a
py- |1l T 315
I P’U
[lall
where d=(a,,...,a,)",

_ 1 \aa® oa,

Poi=(5 iar 9 vt
This formula is briefly discussed by Parlett [1980, p. 92, Example 6.3.6). Note that
P as defined in (3.15) can be stored and applied to a vector with the same efficiency
as an elementary reflector. In fact only trivial modifications to existing QR codes
are required to change from reflectors to rotators. Note also that orthogonal bases
for the range and null space of a(x) are provided by the first column and remaining
(n—1) columns of PL respectively.

The elementary rotator P is not defined by (3.15) at points satisfying a = ae’', oa <
0. However, precisely the same switching rule described in (3.10)-(3.11) may be
used in this situation with P, computed at step (3.13) in place of Qy using formula
(3.15). As with the row interchanges, it is straightforward to show that oy, is constant
for all k sufficiently large whenever a* - a* # 0. This means that for a given sequence
{x*}, convergent to x*, the elementary orthogonal transformation will be computed
by the same formula for all k sufficiently large. Moreover, while a different sequence
may result in different formula in the limit, the formula selected will suffice in a
neighborhood of x*.

4. Concluding remarks

We have suggested three different strategies for maintaining a continuous
orthonormal basis for the null space of a matrix AT which varies continuously with
x. The first method has the attraction that the standard QR decomposition
implementation can be employed. However, it has the disadvantage that. row
interchanges may be necessary in order to maintain continuity of Z(x). Nevertheless,
if the element of maximum modulus is initially pivoted into the first row (in the
case t=1) it seems highly unlikely that many subsequent interchanges would be
necessary.

The second procedure (b) does not require interchanges. It is based on the
observation (Parlett (1971)) that disastrous cancellation need not occur when u is
computed without the ‘sign bit’ provided the computation is done correctly. Discrete
changes are necessary only in the extreme case when a(x) oscillates between +||al|e’
and —||a/|e’' —a highly unlikely scenario. On the negative side, this procedure cannot
use a standard black box QR decomposition routine.
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Finally, the third procedure (c) has all of the advantages and some of the
disadvantages attributed to method b. The elementary rotator (as described in c)
has some additional geometric appeal, however. If the vector a is ‘close’ to
+||alle'(—||alle"), then a is rotated into +|alle’ (—||alle'). The opposite is true for
elementary reflectors.

All three of these schemes suffer from a particular malady that requires a significant
increase in work to overcome. The problem is that given any one of these strategies
and a positive number ¢, there is a convergent sequence {a“} which will require a
sign switch (or row interchange) for some k with ||a“ — a*|| < e. We have not found
a scheme that will overcome this difficulty that lies within the framework of the
standard QR factorization.

The following is a slight modification of a suggestion by Walter Murray. If A = OR
is the current matrix along with its QR factorization and A* = A+ E then one may
compute the QR factorization of A" as follows

A*=Q(R+E) where E=Q"E.

Let B=R+E and compute B=PR where R is upper triangular and P’ =
P,_,P,_, - - P, has been computed using formula (3.15) with o chosen by the
switching rules (3.10)-(3.13). Then form

A*=0OR where O= QP.

If this scheme is applied to a sequence of matrices {A*} that converges to a matrix
A* of full rank then P* - I. Note that the leading element in the column of B being
reduced will be largest in magnitude in a ball around x*. Therefore, the switching
rule will be inactive within this ball and Z(x) will change continuously. This scheme
is apparently more expensive than any of the three schemes described above as it
involves an additional matrix multiply as well as extra storage.

One may also require that Z(x) have additional smoothness properties such as
Lipschitz continuity or perhaps differentiability. It is clear that the strategies dis-
cussed in this note will allow Z(x) to inherit all of the smoothness of A, in a ball
around x*, provided the rank of A(x*) is ¢

Another popular way to obtain the QR decomposition of a matrix A is by using
a sequence of Givens transformations. If A is sparse this may be the preferred
method (see George and Heath (1980), for example), however in the dense case
the Givens procedure is roughly twice as expensive as the elementary reflector
approach. Continuity difficulties occur when Givens transformations are used also.
To see this suppose that =1 and both a,(x) -0 and a,(x)-> 0, where we assume
that elements 1 and n define the Givens transformation that introduces a zero into
position n. Depending on the manner in which a, and a,, converge, the corresponding
Givens matrices may jump around wildly—this spells trouble for the continuity of
Z(x). Continuity of Z(x) can be achieved in conjunction with the use of Givens
transformations, however, if a row interchange strategy (a.) is followed. In particular,
if a is the vector to be reduced to a multiple of e' then it is only necessary to find
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one component which is not zero at the solution (by linear independence, a # 0).
This distinguished component can be used to zero the others, in a fixed order, via
Givens transformations.
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